
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

A micromechanical analysis of the unit cell of a unidirectional hybrid composite is 

performed using finite element method. The fibers are assumed to be circular and 

packed in a hexagonal array. The effects of volume fractions of the two different 

fibers used and also their relative locations within the unit cell are studied. The 

failure envelopes of the hybrid composites are developed from the micro-stresses 

within the unit cell for various macro-stress states using the Direct Micromechanics 

Method (DMM). From the DMM results various phenomenological failure criteria 

such as maximum stress, maximum strain and Tsai-Hill theories are developed for 

the hybrid composites. The results for hybrid composites are compared with single 

fiber composites. 
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INTRODUCTION 

  

 Hybrid composites contain more than one type of fiber in a single matrix 

material. In principle, several different fiber types may be incorporated into a 

hybrid, but it is more likely that a combination of only two types of fibers would be 

most beneficial [1]. They have been developed as a logical sequel to conventional 

composites containing one fiber. Hybrid composites have unique features that can 

be used to meet various design requirements in a more economical way than 

conventional composites. This is because expensive fibers like graphite and boron 

can be partially replaced by less expensive fibers such as glass and Kevlar [2]. 

Some of the specific advantages of hybrid composites over conventional 

composites include balanced strength and stiffness, balanced bending and 

membrane mechanical properties, balanced thermal distortion stability, reduced 

weight and/or cost, improved fatigue resistance, reduced notch sensitivity, 

improved fracture toughness and/or crack arresting properties, and improved impact 

resistance [1].           

 Experimental techniques can be employed to understand the effects of various 

fibers, their volume fractions and matrix properties in hybrid composites. These 

experiments require fabrication of various composites with the above mentioned 

parameters, which are time consuming and cost prohibitive. Therefore, a 

computational model is created as will be described in detail later, which might be 

easily altered to model hybrid composites of different volume fractions of 

constituents, hence saving the designer valuable time and resource. 

 The mechanical properties of hybrid short fiber composites can be evaluated 

using the rule of hybrid mixtures (RoHM) equation, which is widely used to predict 

the strength and modulus of hybrid composites [3]. It is shown however, that 

RoHM works best for longitudinal modulus and longitudinal tensile strength of the 

hybrid composites. Since, modulus values in a composite are volume averaged over 

the constituent microstresses, the overall modulus of the composite has little 

correlation with the randomness of the fiber location. Strength values on the other 

hand are not primarily functions of strength of the constituents; they are however 

dependent on the fiber/matrix interaction and interface quality. In tensile test, any 

minor (microscopic) imperfection on the specimen may lead to stress build-up and 

failure could not be predicted directly by RoHM equations [4].    

 The computational model presented in this paper takes into account, random 

fiber location inside a representative volume element for every volume fraction 

ratio of fibers, in this case, carbon and glass. The effect of randomization seems to 

have considerable effect on the transverse strength of the hybrid composites. As for 

the transverse modulus, a semi empirical relation similar to Halpin-Tsai equations 

has been derived, with the Halpin-Tsai parameter obtained for hexagonal packing of 

circular fibers. Finite element based micromechanics is used to obtain the results, 

which show a good match with experimental results for effective modulus for 

hybrid composites with ternary systems (two fibers and a matrix) [5]. Direct 

Micromechanics Method (DMM) is used for predicting strength, which is based on 

first element failure method; although conservative, it provides a good estimate for 

failure initiation. 

 

 



MODEL FOR HYBRID COMPOSITE 

 

In most composites the fiber packing arrangement is statistically random in 

nature, so that the properties are same in any direction perpendicular to the fiber 

(i.e. properties along the 2-direction are same as that along the 3-direction, see Fig 

3), and the material can be considered transversely isotropic [6]. For this paper, the 

fibers are assumed to be arranged in a hexagonal arrangement in an epoxy matrix, 

since such an arrangement can most accurately represent transverse isotropy. We 

assume a representative volume element (RVE) consisting of 50 fibers embedded in 

an epoxy matrix. Multiple numbers of fiber were selected to allow randomization of 

fiber locations. Hybrid composites are created by varying the number of carbon and 

glass fibers to obtain composites of various volume fractions.  

As a practical example the hybrid composite of polypropylene matrix reinforced 

with short glass and carbon fibers is shown in Fig 1 [7]. The black circles represent 

glass fibers (Vfg=6.25%) and the white circles represent carbon fibers (Vfc=18.75%). 

In order to represent such a random arrangement, we consider multiple fibers as 

mentioned before, and the arrangement is as shown in Fig 2. Green and red 

represent glass and carbon fibers, respectively, while the matrix is shown in white. 

The rectangular RVE is assumed to repeat itself in the 2-3-plane. Also, it is 

assumed that the radii of the fibers are equal and only the number of carbon and 

glass fibers within the RVE was varied to change the volume fractions. This gives 

us much more flexibility in creating the finite element mesh.  

Although, this RVE is very simplistic and entails some basic assumptions such 

as constant fiber diameter, fixed fiber location and absence of voids, it will be still 

useful in understanding the effect of varying the fiber volume fractions on the 

mechanical properties. Since, the actual composite extends through the page in the 

longitudinal direction, a plane strain analysis is sufficient in this case.  A combined 

fiber volume fraction of 60% (Vfg+ Vfc=0.6) is assumed for all the composites 

analyzed in this paper.  The proportions of the reinforcements have been varied to 

obtain five different hybrid composites. The volume fractions of glass and carbon 

fibers were determined as follows: 
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where, Ng = Number of fibers of glass 

 NT = Total number of fibers (50 in the present example) 

 



 
 

Fig 1. Central area of a hybrid composite with Vf (carbon) = 18.75% and Vf (glass) = 6.25% 

 

 

 
 

Fig 2. A representative volume element (RVE) for the hybrid composite  

 

 

MICROMECHANICAL ANALYSIS 

 

The RVE of the hybrid composite was analyzed using the finite element 

method. It is assumed that a uniform macrostress exists through the composite. It is 

also assumed that the fibers are circular in cross section an arranged hexagonally 

across the representative volume element (RVE) which has a square boundary. The 

composite is assumed to be under a state of uniform strain at the macroscopic level 

called macroscale strains or macrostrains, and the corresponding stresses are called 

macrostresses. However, the microstresses, which are the actual stresses in the 

constituent phases in the RVE will have spatial variation.  The macrostresses are 

average stresses required to produce a given state of macro-deformations, and they 

can be computed from the finite element results. The macrostresses and 

macrostrains follow the following constitutive relation: 

 

     [ ]      
 

where, [C] is the stiffness matrix of the homogenized composite.. In performing the 

micromechanical analysis, the Ris subjected to six independent macrostrains. For 

each applied non-zero macrostrain, it is also subjected to periodic boundary 

conditions such that all other macrostrains are zero. The six cases are [8]: Case 1: 

   
  = 1; Case 2:    

  = 1; Case 3:    
  = 1; Case 4:    

  = 1; Case 5:    
  = 1; Case 6: 

   
  = 1.  



Finite Element Analysis  

 

For cases 1, 2 and 4, three- and four-node plane strain elements, CPE3/CPE4 in 

the commercial finite element program Abaqus, were used.  For Case 3,   

generalized plane strain elements CPEG3/CPEG4 were used. Cases 5 and 6 involve 

out of plane shear deformations and plane strain elements cannot be used for this 

purpose. Shear deformable plate elements were used for the two longitudinal shear 

cases. The plate was assumed to have infinite bending and extensional stiffness so 

that the transverse shear was the only active deformation mechanism in the plate. 

The periodic boundary conditions (PBC) maintain equal boundary displacements 

with the adjacent unit cells to satisfy the compatibility of displacements on opposite 

faces of the unit cells and also enforce the continuity of stresses [9].  The unit cell is 

thus subjected to various macrostrains using the PBC described in Table 1. For each 

strain case, microstresses were calculated in each element in the finite element 

model and volume averaged to find the six macrostresses. This populates one 

column of the C matrix. This process is repeated for all the six strain cases. The 

finite element model, which contains 27,000 elements, is shown in Fig 3. In the 

above finite element model, the opposite faces of the unit cell should have 

corresponding nodes for enforcing the periodic boundary conditions using multi-

point constraints [8]. The C matrix thus obtained can be inverted to obtain the 

compliance matrix or S matrix, from which the elastic constants can be computed 

using the following relations: 
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TABLE 1. Periodic Boundary Conditions for rectangular RVE  

(L2 and L3 being the dimensions of the RVE along 2 & 3 directions, respectively) 

 

 Constraint between Left and 

Right faces 

Constraint between Top and 

Bottom faces 

Out of Plane Strains 
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Fig 3. Finite element model of the RVE  

 

 

 The material properties (elastic moduli) for the various constituents are as per 

Table 2. For a composite to have transversely isotropic behavior in the 2-3-plane, it 

has to follow the relation: 
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As shown in Table 3, all the composites for the present analysis closely possess 

transverse isotropy. One reason for such a behavior may be attributed to the 

hexagonal packing of the fiber, which represents better isotropy in the 2-3 plane. As 

for the hybrid composites, 10 samples of each volume fraction ratio were 



considered. The mean values for the elastic constants were used to study the effect 

of hybridization on the elastic constants.  

Rule of mixtures was also used to predict the longitudinal modulus E1 for 

carbon-epoxy and glass-epoxy composite. However for the hybrid composites, the 

rule of mixtures was modified in order to accommodate the volume fraction of both 

carbon and glass fibers, and it is shown later that the E1 for hybrid composites 

obtained as such, matches well with the results from finite element analysis.  

 For the transverse modulus, E2, and for shear modulus G12, semi-empirical 

formulations similar to Halpin-Tsai equation was derived. For hybrid composites, 

Halpin-Tsai equation was modified to accommodate volume fraction of both the 

fibers. Once again, the results show a good match with those from finite element 

analysis. The results obtained from both the finite element analyses as well as from 

empirical formulations are tabulated in Table 4. The variations of the moduli with 

volume fraction of the hybrid composites are also shown.  

 

 

EVALUATION OF STRENGTH PROPERTIES   

 

 Failure is predicted using the Direct Micro-Mechanics (DMM), in which every 

element in the finite element model is checked for failure. A flowchart that 

describes DMM is shown in Fig 4. Thus for a given state of macrostress, we need to 

determine the microstresses in every element in the fiber and the matrix phases. The 

macrostrain for a given state of macrostress can be obtained from the constitutive 

relations using the modulus values obtained for that composite using the following 

relation: 
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From the unit cell analysis as discussed before, we already have the microstresses in 

every element for six independent unit macrostrain cases. Thus, the microstresses 

for a given macrostress state can be obtained using the principle of superposition as 

follows:  
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where {σ
(e)

} is the microstress in Element e, and the matrix [F
(e)

] represents the 

microstresses in Element e for various states of unit microstrains. For example, the 

first column in FiI contains the six microstresses in Element e caused by unit 

macrostrain    
 . In the present work it is assumed that there exist no thermal 

residual stresses in the composite [8].   

 

 

 

 

 



 

 

  

  

 

 

 

 

 

 

  

  

    

   

 

  

  

 

  

 

 
Fig 4. Flow chart for Direct Micromechanics method for failure 

 

 

 In order to determine if an element has failed or not, we need failure criteria for 

fiber and matrix materials. It is assumed, that failure criteria for fibers and matrix 

phases are known. We have considered a quadratic interaction failure criteria for 

carbon fiber and maximum normal stress failure criteria for glass fiber and epoxy. 

The quadratic failure criterion closely resembles the one proposed by Hashin for 

unidirectional fiber composites [10]. As mentioned before, literally all 

unidirectional fiber composites are transversely isotropic in the 2-3 plane, since the 

fiber arrangement is statistically random. Further, as stresses in 2-3 plane are 

invariant of the rotation around the longitudinal axis, failure criterion must be 

invariant of any rotation around 1 axis. Hence, it can be safely assumed that fiber 

failure in the longitudinal direction is controlled by σ1 only. Also, since σ2, σ3 and 

τ23 form a state of plane stress and 2-3 plane being an isotropic plane, it can be 

assumed that there exists two principal stresses which should control the failure in 

the 2-3 plane. Also, because of transverse isotropy, τ12 and τ13 should be 

approximately equal. Hence, the resultant of the axial shear stresses can be critical 

if it reaches the shear strength of carbon.  

For glass fiber and epoxy matrix we have used maximum principal stress 

criterion for predicting failure. Also, in the present paper, we have assumed that the 

composite has failed even if only one element in the fiber or matrix fails. Although 

this assumption is very conservative, it gives as a good estimate of initial failure of 

the composite [8]. Similarly, for the hybrid composites, depending on the type of 

element, carbon, glass or matrix, we have to apply respective criterion for failure as 

described above. Using such methods, we have generated failure envelopes for the 

composite in various stress spaces. 

State of macrostress selected       

Macrostrain is computed       [   ]      
 

{ ( )}   [ ( )]      

Microstresses in element e is computed  

 

e = 1 

Element failure to be checked? 
 

If e = etot Composite has failed  

STOP Composite has not failed 

Next element 
to be checked 

e = e + 1 

Yes 
No 

Yes No 



RESULTS AND DISCUSSIONS   

 

 Carbon and glass were chosen as the two fiber materials, and an epoxy as the 

matrix material. Further comparison has also been made with empirical formulation 

whenever possible.   

 
TABLE 2. Elastic properties of various constituents  

        

Property  E-glass fiber [9] Carbon fiber (IM7) [11] Epoxy [9]  

E1 (GPa) 72.4 263 3.5 

E2, E3 (GPa) 72.4 19 3.5 

G12, G13 (GPa) 30.2 27.6 1.29 

G23 (GPa) 30.2 7.04 1.29 

ν12, ν13 0.2 0.2 0.35 

ν23 0.2 0.35 0.35 

 

 

Elastic Constants 

 

 As shown in Fig. 5, longitudinal modulus, E1 for the hybrid composites vary 

linearly with volume fraction of the constituents. E1 for Carbon/Epoxy being the 

highest and then linearly decreases as volume fraction of carbon reduces from 0.6 to 

0. The comparison of E1 with results from standard models like the rule of mixtures 

was also done. It shows that the RoHM do a good job in predicting the longitudinal 

modulus and the poisson’s ratios, ν12 and ν13. It is important to note here, that for 

the three phase composites, the rule of mixtures should incorporate volume fraction 

of all three constituents 

 

                            

 

This formulation captures the hybridization effect on longitudinal modulus and 

poisson’s ratios very successfully as shown in Fig 5 and Fig 7.   

 A general method to estimate the properties E2 and G12 involves the use of 

semi-empirical equations that are adjusted to match experimental results such as the 

Halpin-Tsai equation. For the transverse modulus, the Halpin-Tsai equation is: 
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and   is a curve-fitting parameter, which is dependent on the fiber packing 

arrangement. The corresponding equation for G12 is obtained by replacing Young’s 

moduli E2, Ef and Em in the above equation by shear moduli G12, Gf and Gm 

respectively. Halpin and Tsai found that the value     gave an excellent fit to the 

finite difference elasticity solution of Adams and Doner [12] for the transverse 

modulus of a square array of circular fibers. For the same material and fiber volume 

fraction, a value of     gave excellent agreement for G12 [13].   

 But for circular fibers in a hexagonal array, we don’t have an explicit value for 

 . In this paper, we have used the finite element solution for E2 and G12 for 

Carbon/Epoxy and Glass/Epoxy composites, to iteratively find the value for  . This 

resulted in        for transverse modulus E2 and        for G12. We propose 

the following empirical formula for E2 of hybrid composites: 
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For the hybrid composite we use        for transverse modulus E2 and        

for G12. The variation of E2 and G12 with volume fraction of carbon is shown in Fig 

6 and Fig 8, respectively. One can note that the finite element results match the 

modified Halpin-Tsai equations for hybrid composites very well. Tabulated below 

are the summary of the results for elastic properties for all the composites, followed 

by the plots showing effects of hybridization on the various elastic moduli. The 

moduli are plotted with respect to volume fraction of carbon fiber as it increases 

from left to right i.e. from glass/epoxy to carbon/epoxy composite.   
 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. Comparison of G23 to test transverse isotropy. A ratio of 
23 23

/ 1G G   denotes perfect 

tramnsvese isotropy 

 

 
Volume of 

Reinforcement G23    
  

  

 (     )
 

23 23
/G G   

  Carbon Glass 

Carbon/Epoxy 0.6 0 3.04 3.05 0.997 

Hybrid 

0.54 0.06 3.14 3.15 0.997 

0.42 0.18 3.36 3.37 0.997 

0.3 0.3 3.6 3.62 0.994 

0.18 0.42 3.88 3.90 0.995 

0.06 0.54 4.19 4.20 0.998 

Glass/Epoxy 0 0.6 4.35 4.37 0.995 

 

 
Table 4.  Comparision of results from finite element method and Halpin-Tsai relations  

 

 
E2  

G12 

Composite 
FEA 

(GPa)  

Halpin-Tsai 

(GPa) 

% 

Diff  

FEA 

(GPa) 

Halpin-Tsai 

(GPa) 

% 

Diff 

Carbon/epoxy 8.77 8.59 2.07 
 

4.41 4.41 -0.05 

Hybrid 

9.05 8.88 1.84 
 

4.41 4.42 -0.04 

9.66 9.52 1.47 
 

4.43 4.43 -0.04 

10.33 10.22 1.08 
 

4.44 4.44 0.00 

11.05 11.00 0.50 
 

4.45 4.45 -0.06 

11.82 11.86 -0.37 
 

4.46 4.46 -0.06 

Glass/epoxy 12.21 12.33 -1.02   4.47 4.47 0.05 

 

 

 
 

Fig 5. Effect of Hybridization on E1 
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Fig 6. Effect of hybridization on E2 

 

 

Fig 7. Effect of hybridization on Poisson’s Ratios 

 

 

 

Fig 8. Effect of hybridization on G12 
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Strength Properties 

 

 Composite failure can generally be defined by either fiber failure or matrix 

failure, considering the interface has infinite strength and doesn’t fail. The fiber 

failure strain can be defined by    
( )

    
( )

     and the matrix failure strain would 

be    
( )

    
( )

    , where    
( )

,    ,    
( )

,     would be longitudinal tensile 

strength of fiber, fiber longitudinal modulus, longitudinal tensile strength of matrix 

and matrix longitudinal modulus respectively. In this case, since    
( )

 is higher than 

   
( )

, we can conclude that matrix will govern the failure. So, if matrix failure is the 

criterion, composite failure will occur at the strain level corresponding to the matrix 

failure strain,    
( )

. Hence, when the stress in the matrix reaches the matrix tensile 

strength,    
( )

, the fiber stress reaches the value     
( )

       
( )

, the composite 

stress reaches the composite strength,   
( )

, which is given by the following 

equation [6]: 
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This equation gives a good measure of the failure strength for initiation of 

failure. The results from finite element analysis clearly show a close match with the 

value from the above equation. The empirical relation for longitudinal tensile 

strength can be modified for hybrid composites, by including the volume fractions 

for both the reinforcements as follows:  
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and            

  

 

Empirical relation for prediction of transverse moduli has not been developed yet. 

Table 5A and 5B lists the strength properties for the constituents used in this 

analysis, whereas Table 6 summarizes the strength properties for carbon/epoxy and 

glass/epoxy composites. While dealing with compressive strength, tensile strengths 

are replaced by compressive strengths and no buckling effect was studied here.  

 

 

 

 



Table 5A. Strength properties of unidirectional fibers [9] 

 

  Carbon Glass 

Longitudinal Tensile Strengths (MPa) 4120 1104 

Longitudinal Compressive Strength (MPa) 2990 1104 

Transverse Tensile and Compressive Strengths (MPa) 298 1104 

Shear Strength (MPa) 1760 460 

   
 

 

Table 5B. Strength properties for matrix [9] 

 
  Epoxy 

Tensile Strength (MPa) 49 

Compressive Strength (MPa) 121 

Shear Strength (MPa) 93 

  
 

 

 

Table 6. Summary of Strength properties for Composites 

 

Strength 

 

 

Carbon/Epoxy 

 

 

 

Glass/Epoxy 

 

FEA Empirical % Diff FEA Empirical % Diff 

 

Longitudinal Tensile 

Strength (MPa) 

2,130 2,230 4.50 598 628 4.76 

       

Longitudinal 

Compressive 

Strength (MPa) 

1807 1811 0.23 683 511 -33.82 

       

Transverse Tensile 

Strength (MPa) 
41 47 12.19 38 46 15.91 

       

Transverse 

Compressive 

Strength (MPa) 

101 115 12.19 86 113 23.78 

       

 
 

 

 

 

 

 

 

 

 

 

 

 



Table 7. Comparison of Longitudinal Tensile strength for composites with empirical results 

 
 

Composite 

 

Vfc Vfg FEA (MPa) Empirical (MPa) % Diff 

Carbon/epoxy 0.6 0 2130 2229 4.43 

Hybrid 

0.54 0.06 1972 2069 4.67 

0.42 0.18 1665 1748 4.77 

0.3 0.3 1360 1428 4.78 

0.18 0.42 1055 1108 4.79 

0.06 0.54 750 788 4.81 

Glass/Epoxy 0 0.6 598 628 4.74 

 

 

 
 

Fig 9. Variation of longitudinal tensile strength with volume fraction of reinforcement  

 

 

Table 7 shows a good match between the rule and mixtures predictions and 

those obtained from finite element method, for the Longitudinal Tensile strength for 

hybrids. Failure envelopes were constructed by applying bi-axial macrostress to the 

different composites. The envelopes thus obtained are compared with existing 

phenomenological criteria such as Tsai-Hill, Maximum Stress and Maximum strain 

criteria. Fig 10 shows failure envelopes in the       plane for hybrid composite, 

with equal proportion of carbon and glass, respectively.  

 
 

 

 

0 0.06 0.18 0.3 0.42 0.54 0.6
400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

v
f
 glass

S
L(+

)  H
y
b
ri
d
 C

o
m

p
o
s
it
e
 (

M
P

a
)



 
Fig 10. Failure Envelope for hybrid composite (30% carbon+30% glass) in σ1- σ2 plane 

 

 

 
Fig 11. Relative comparison of DMM failure envelopes for composites in σ1- σ2 plane 

 

 

As is evident from the above Fig 10, not one phenomenological criterion can 

effectively predict the strength of the composite. Since, the failure of the composite 

is generally matrix controlled for the longitudinal compressive and transverse 

compressive stresses, maximum stress theory shows a good match with DMM for 

these stresses. Tsai-Hill failure theory being a quadratic failure theory shows good 

match when failure is fiber controlled such as in the first quadrant, but under 

predicts the strength for all other cases. Similar is the case for maximum strain 
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theory, which over predicts the strength for the first and third quadrants while offers 

a conservative prediction for the second and fourth quadrant.  

The failure envelope for the hybrid composite was compared with that for 

carbon/epoxy and glass/epoxy as shown in Fig 11. The longitudinal strength is a 

weighted mean of the volume of reinforcements as it follows the rule of mixtures. 

As for the transverse strength is considered, hybrid composites are very sensitive to 

the location of the fibers in the RVE. Variations of transverse tensile and 

compressive strengths are shown for the 10 samples analyzed are shown with 

respect to the changes in volume fraction in Fig 12 and 13, respectively. One way to 

accurately predict the variation in transverse strengths is to use statistical methods 

that can take into account the randomness in fiber locations and make a 

probabilistic prediction of the transverse strength or to come up with a RVE model 

that can capture the fiber randomness more effectively.  

 

 
 

Fig 12. Variability in transverse tensile strength of hybrid composites as a function of glass fiber 

volume fraction 

 

 
 

Fig 13. Variabiity in transverse compressive strength of hybrid composites as a function of glass 

fiber volume fraction  
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CONCLUSION  

  

 A computational model for hybrid composites using circular fibers in a 

hexagonal array has been proposed. Some of the parameters that play a key role in 

studying the hybrid effect on the stiffness and strength properties have been 

incorporated. The stiffness properties show a smooth linear variation with the 

change in volume fraction. Also orientation of the fibers in the unit cell did not 

affect the stiffness properties by and large. The reason for this behavior might be 

because of the fact that stiffness being a volume averaged quantity, doesn’t depend 

on the position of the fibers but the overall effective volume fraction of the 

reinforcement only. The accuracy of the model was put to test by comparing results 

obtained from existing empirical and semi empirical relations. They showed a good 

match within limits of computational error.  

Strength properties were also evaluated using Direct Micromechanics method 

and variation with volume fraction was also studied. Longitudinal tensile strength 

like the longitudinal modulus largely depends on the volume fraction of 

reinforcement and follows a linear trend. Although, longitudinal compressive 

strength was evaluated using similar methods, the accuracy of the data is still 

questionable. This is because, phenomena like micro-buckling and instability of 

fibers which largely govern the compressive strength, have not been taken into 

account.  

Transverse strength for the composites has also been evaluated. It was observed 

that, transverse strength is highly sensitive to the location of the fibers inside the 

RVE. Use of statistical methods or a model that can better randomize the position 

and size of the fibers, which might better predict the transverse strength, remains a 

future work.  

 Overall, the idea of the present work was to come up with a design that is 

flexible enough to analyze a hybrid composite with any volume fraction and any 

reinforcement for variation in the properties. This might serve the designer looking 

for effective moduli of a composite with two or more fibers and give an estimate of 

failure initiation. Future work in this area would be to study such similar models 

and possibly formulate a closed form solution for predicting strength of any hybrid 

composite, without performing the finite element analysis.    
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